& test


tex:1 + 1/2 + 1/4 + \ldots + 1/2^n
tex:\displaystyle{\sum_0^\infty x^n/n!}
tex:\displaystyle{\sum_0^\infty (-1)^nx^n/n!}
tex:\displaystyle{\sum_0^\infty x^n/n}
tex:\displaystyle{\sum_0^n 2^{-n}}
tex:\displaystyle{\delta I = \int_\textit{A}^\textit{B}{\left( \frac{ \partial{L} }{ \partial {q} } - \frac{d}{dq} \frac{ \partial{L} }{ \partial \dot{q} } \right)\delta q dt}}

tex:\nabla \times C
tex:\lambda_j = \vec{\lambda} \cdot \vec{e}_j
tex:\lambda_j = \mathbf{\lambda} \cdot \mathbf{e}_j
tex:\displaystyle{v(t) = v_0 + \frac{1}{2} a t^2}
tex:\displaystyle{\gamma \equiv \frac{1}{\sqrt{1 - v^2/c^2}}}
tex:\displaystyle{\ddot{x} = \frac {d^2x} {dt^2}}

tex:\displaystyle{f’(x) = \lim_{h \to 0} \left( \frac{f(x+h)-f(x)}{h} \right)}
tex:\displaystyle{x = \frac{-b \pm \sqrt{b^2 – 4ac}}{2a}}

tex:ab\;|\;a b\;|\;a\! b\;|\;a\: b\;|\;a\, b\;|\;a\; b

tex:\displaystyle{e^x = \sum_{n=0}^\infty \frac{x^n}{n!} = \lim_{n\rightarrow\infty} (1+x/n)^n}
tex:\displaystyle{\int_{0}^{1} x dx = \left[ \frac{1}{2}x^2 \right]_{0}^{1} = \frac{1}{2}}
tex:\displaystyle{L = \int_a^b \left( g_{\it ij} \dot u^i \dot u^j \right)^{1/2} dt}
tex:\iiint f(x,y,z)\,dx\,dy\,dz
tex:\lim_{\substack{x\rightarrow 0\\y\rightarrow 0}} f(x,y)
tex:\displaystyle{\int\dots\int_\textrm{paths} \exp{(iS(x,\dot{x})/\hbar)}\, \mathcal{D}x}
tex:A \alpha B \beta \Gamma \gamma \Delta \delta \dots \Phi \phi X \chi \Psi \psi \Omega \omega
tex:\displaystyle{\Gamma^l_{ki} = \frac{1}{2} g^{lj} (\partial_k g_{ij} + \partial_i g_{jk} - \partial_j g_{ki})}

tex:\displaystyle{i \hbar \frac{\partial \Psi}{\partial t} = - \frac{\hbar^2}{2 m} \ \frac{\partial^2{\Psi}}{{\partial x}^2} + V \Psi}
tex:\displaystyle{<\!\!{\phi|\psi}\!\!>\equiv \int \phi^*(x) \psi(x)\,dx}


tex:e^+e^-\rightarrow u \bar{u}
tex:e^+e^-\rightarrow \mu^+\mu^-
tex:e^+e^-\rightarrow \gamma\gamma
tex:\displaystyle{\int_{0}^{1} \frac{2x}{\sqrt{a^2 + x^2}} dx = \left[ \sqrt{a^2 + x^2} \right]_{0}^{1}}

The LaTeX expression: “\sqrt(3){ 1 + x^2 }” will not work correctly with tex:\TeX: tex:\sqrt(3){ 1 + x^2 }, use “\root 3 \of { 1 + x^2 }” instead: tex:\root 3 \of { 1 + x^2 }.

The LaTeX expression: “\matrix {a & b \cr c & d }” will not work correctly with tex:\TeX: tex:\matrix {a & b \cr c & d }, use “\left[ \matrix {a & b \cr c & d} \right]” instead: tex:\left[ \matrix {a & b \cr c & d} \right].

MSVC special command line options

/Zl will avoid the compiler to generate the library name information in the object file, thus you can generate runtime library independent object files.

/E command line compiler option to generate preprocessed code.

In your project property page: Configuration Properties | C/C++ | Command Line, you can add /E option manually in Additional Options box.

Then when you compile the code, the preprocessed code will displayed in the Output window.

Dependency management

How to management the dependency between the software modules? Is there any GNU tool to do this?

How can we collect units from some symbol entries together? I mean how can I start with some symbols, collect all the code units that these symbols directly or indirectly depend on, to make a single library file which contains all these symbols and all dependencies.